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1 Introduction

Remarkable advancements in our understanding of maximally N = 4 supersymmetric

Yang-Mills (SYM) theory have been made possible due to its integrability in the planar

limit. This theory appears to be equivalent to type IIB superstring theory on AdS5 × S5

via the AdS/CFT correspondence and in particular at strong coupling it is described by

classical superstrings. In [1], the well-known classical integrability of the bosonic AdS5×S5

string sigma model was shown to extend to its κ-symmetric Green-Schwarz-type fermionic

generalisation [2] (see also [3]). In this formulation, the superstring sigma model action

is based on the coset superspace PSU(2, 2|4)/(SO(1, 4) × SO(5)), where the denominator

group arises as fixed point set of an order-4 automorphism of PSU(2, 2|4). It is this latter

feature that allows for the construction of conserved non-local charges à la Lüscher and

Pohlmeyer [4] for the superstring on AdS5 × S5 [1] (see also [5–9]).1 For a discussion of

integrability of the superstring model with the gauges fixed and the Virasoro constraints

imposed, see [11, 12] and e.g. [13–24].

In this work, we consider superstring sigma models that are based on coset superspaces

G/H. Even though our analysis can be extended to more general cases, we always assume

that H arises as fixed point set of an order-4 automorphism. This then includes the

above-mentioned case of type IIB superstrings on AdS5 × S5. This also includes type IIA

superstring theory on AdS4 × CP 3 in a peculiar partial κ-symmetry gauge with G/H =

OSp(2, 2|6)/(SO(1, 3)×U(3)) [25, 26] (see also [27, 28]). This particular string theory is the

gravitational dual of the ’t Hooft limit of a three-dimensional Chern-Simons matter theory

that has recently been proposed to be the low-energy description of stacks of M2-branes

on R8/Zk [29]. Notice that it is a quite generic feature that superstring sigma models

1Aspects related to involutivity of the charges were discussed in [10].
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based on coset superspaces of the above type are classically integrable and in fact, this

even extends to models on coset (super)spaces with order-k automorphisms [30].

The full system of the corresponding superstring equations consists of i) the Maurer-

Cartan equations and ii) the equations of motion that follow upon varying an associated

action functional. This set of equations is referred to as the first-order system for the

superstring.2 We shall discuss the integrability of this system from a different point of

view: By using twistor methods, we show that the first-order system of the superstring

arises via a dimensional reduction of some generalised self-dual Yang-Mills (SDYM) theory

in eight dimensions. The reason for considering eight dimensions lies in the necessity of

having three ‘Higgs fields’ (as a result of the Z4-grading) after the dimensional reduction.

Recall that there are various generalisations of the four-dimensional SDYM equations toRd with d > 4 [31–33] and some solutions to these generalised equations were, for instance,

constructed in [33–39]. See also [40] for an extension of the ADHM construction [41].

Below, we will identify the theory that gives rise to the Lax formulation of superstring

theory on G/H. Before discussing the superstring case, however, we shall review the case

of symmetric space sigma models thereby setting up our notation and conventions.

Since the present approach is based on twistor theory, one may naturally hope that it

will turn out useful for the construction of explicit solutions to the superstring equations

of motion by e.g. using twistor methods like Ward’s splitting approach [42] (see also [32])

and for the study of the hidden symmetry structures. This in turn would shed light on the

properties of (strongly coupled) gauge theory via the holographic correspondence. We will

briefly comment on this at the end of this work.

2 Symmetric space coset models and self-dual Yang-Mills theory

2.1 Symmetric space coset models

Let G be a Lie group and H a Lie subgroup of G and consider the coset G/H := {gH | g ∈
G}. We shall assume that H arises as the fixed point set of an order-2 automorphism of G.

This means that at the Lie algebra level g := Lie(G) we have a Z2-decomposition according

to g ∼= g(0) ⊕ g(2), where g(0) := Lie(H) and

[g(0), g(0)] ⊂ g(0) , [g(0), g(2)] ⊂ g(2) and [g(2), g(2)] ⊂ g(0) . (2.1)

If these relations are satisfied, G/H is said to be a symmetric space. In the sequel, we shall

also denote g(0) by h.

To define the sigma model action, we consider a map g : Σ → G, where Σ is a world-

sheet surface with a metric of Lorentzian signature (+−), and introduce the flat current

j := g−1dg = j(0) + j(2) = A+ j(2) , with A := j(0) ∈ h and j(2) ∈ g(2) . (2.2)

The dynamical two-dimensional fields will take values in the coset space G/H. The ac-

tion that describes them should simultaneously be invariant under the global (left) G-

transformations of the form

g 7→ g0g for g0 ∈ G , (2.3a)

2Of course, these equations should be complemented by the Virasoro constraints.
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and the local (right) H-transformations of the form

g 7→ gh for h ∈ H . (2.3b)

By construction, the current j is invariant under (2.3a). Under (2.3b), the A-part of j

in (2.2) transforms as a connection, A 7→ h−1Ah+h−1dh, while j(0) transforms covariantly,

j(0) 7→ h−1j(0)h.

The sigma model action is then given by

S = 1
2

∫

Σ
tr
[

j(2) ∧ ∗j(2)
]

. (2.4)

Here, ‘∗’ is the Hodge star operator on Σ and ‘tr’ the trace on g compatible with theZ2-grading. If we set

∇α := dα+A ∧ α− (−1)pα ∧A (2.5)

for a Lie algebra-valued p-form α on Σ, then the corresponding first-order system may be

written as

dA+A ∧A+ j(2) ∧ j(2) = 0 , ∇j(2) = 0 and ∇∗j(2) = 0 , (2.6)

where the first two equations are the h and g(2) components of the Maurer-Cartan equation.

As is well-known, the first-order system is equivalent to the flatness,

dJ(ζ) + J(ζ) ∧ J(ζ) = 0 , (2.7a)

of a Lax connection J(ζ), with ζ a complex spectral parameter:

J(ζ) := A+ 1
2(ζ + ζ−1) j(2) + 1

2(ζ − ζ−1) ∗j(2) . (2.7b)

To arrive at (2.6) from (2.7) we note that on a worldsheet Σ with a Lorentzian signature

metric we have ∗∗ = 1. We also have α∧ ∗β + ∗α∧ β = 0 for two one-forms α and β on Σ.

Notice that the flatness equation (2.7a) follows as compatibility condition for an auxiliary

linear problem
[

d + J(ζ)
]

ψ = 0 , (2.7c)

where ψ is some G-valued function that depends on the spectral parameter ζ.

2.2 Twistors and self-dual Yang-Mills theory

Let us now explain how the system (2.6), (2.7) in conformal gauge arises from SDYM

theory in four dimensions. To this end, we start from the twistor approach. For text-book

treatments of SDYM theory in the context of twistor theory, we refer to [43, 44].

Consider complexified four-dimensional space-time M4 := C4. We have the identifica-

tion TM4 ∼= S⊗S̃, where S and S̃ are the two spinor bundles of undotted and dotted spinors

on M4, and so we may consider the projective co-spin bundle F5 := P(S̃∗) ∼= C4 ×CP 1

over M4. We shall refer to F5 as correspondence space. The spaces M4 and F5 may be

coordinatised by xαβ̇ and (xαβ̇ , λα̇), where λα̇ are homogeneous coordinates on CP 1 and

α, β, . . . = 1, 2, α̇, β̇, . . . = 1̇, 2̇. On the spinor space S (and similarly on S̃) we have a

– 3 –
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symplectic form εαβ = ε[αβ] with εαγε
γβ = δα

β and ε12 = −1, which can be used to raise

and lower spinor indices. If we let ∂
αβ̇

:= ∂/∂xαβ̇ , then we define the twistor distribution

to be the rank-2 distribution D on F5 given by

D := span
{

Vα := λβ̇∂
αβ̇

}

. (2.8)

Since D is integrable, it defines a foliation of F5, the resulting quotient will be twistor

space, a three-dimensional complex manifold denoted by P3. We have thus established the

following double fibration:

P3 M4

F5

π1 π2�
�	

@
@R

(2.9)

where π2 is the trivial projection and π1 : (xαβ̇ , λα̇) 7→ (zα = xαβ̇λ
β̇
, λα̇). Hence,

P3 ⊂ CP 3 can be identified with O(1) ⊗ C2 → CP 1, where O(m) are the homoge-

neous polynomials of degree m on CP 1. Furthermore, a point x ∈ M4 corresponds to a

projective line CP 1
x →֒ P3 in twistor space, while a point (z, λ) ∈ P3 corresponds to a

totally two-dimensional null-plane in space-time M4. Such a plane may be parametrised

as xαβ̇ = xαβ̇
0 + µαλβ̇, with xαβ̇

0 = const. and µα arbitrary.

Consider now a rank-r holomorphic vector bundle E → P3 and its pull-back π∗1E →
F5.3 Both the twistor space and the correspondence space can be covered by two coordinate

patches which we denote by U± and Û±, respectively. Then the bundles E and π∗1E are

characterised by transition functions f+− on U+∩U− and π∗1f+− on Û+∩Û−. In the sequel,

we shall not make a notational distinction between f+− and π∗1f+− and simply write f+−
for both bundles. By definition of a pull back, f+− is constant along π1 : F5 → P3 and

thus is annihilated by the vector fields of the twistor distribution (2.8). Letting ∂̄P and ∂̄F
be the anti-holomorphic parts of the exterior derivatives on P3 and F5, respectively, we

have π∗1 ∂̄P = ∂̄F ◦ π∗1 . Hence, the transition function f+− is also annihilated by ∂̄F .

We shall also assume that E is topologically trivial and holomorphically trivial when

restricted to any CP 1
x →֒ P3 for x ∈ M4. These conditions then imply the existence of

smooth GL(r,C)-valued functions ψ± on Û± such that f+− can be decomposed as f+− =

ψ−1
+ ψ− with ∂̄Fψ± = 0, i.e. the ψ± are holomorphic on Û±. Clearly, this splitting is

not unique, since one can always perform the transformation ψ± 7→ gψ±, where g is some

globally defined GL(r,C)-valued holomorphic function on F5 (hence it is constant on CP 1).

The choice of g will correspond to a choice of gauge for the Yang-Mills gauge potential on

space-time. Since V ±
α f+− = 0, where V ±

α are the restrictions of Vα to the coordinate

patches Û±, we find

ψ+V
+
α ψ

−1
+ = ψ−V

+
α ψ−1

− (2.10)

on Û+ ∩ Û−. Explicitly, V ±
α = λβ̇

±∂αβ̇ with λ+
α̇ := λα̇/λ1̇ =: (1, λ+)T and λ−α̇ := λα̇/λ2̇ =:

(λ−, 1)T , where (xαβ̇ , λ±) are local coordinates on Û±. Therefore, by an extension of

3One may impose the additional condition of having a trivial determinant line bundle det E what would

reduce the structure group GL(r,C) to SL(r,C).
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Liouville’s theorem, the expressions (2.10) can be at most linear in λ+ and thus we may

introduce a Lie algebra-valued one-form A on F5 which has components only along D,

VαyA|Û±
:= A±

α = ψ±V
±
α ψ

−1
± = λβ̇

±Aαβ̇ , (2.11)

where A
αβ̇

is λ±-independent. This can be re-written as

(V ±
α + A±

α )ψ± = λβ̇
±∇αβ̇

ψ± = 0 , with ∇
αβ̇

:= ∂
αβ̇

+ A
αβ̇

. (2.12)

The compatibility conditions for this linear system read as

[∇
αβ̇
,∇

γδ̇
] + [∇

αδ̇
,∇

γβ̇
] = 0 , (2.13)

and this is nothing but the SDYM equations, since

[∇
αβ̇
,∇

γδ̇
] = εαγfβ̇δ̇

+ ε
β̇δ̇
fαβ , (2.14)

where fαβ (respectively, f
α̇β̇

) represents the self-dual (respectively, anti-self-dual) part of

the field strength.

In summary, we have described a one-to-one correspondence between equivalence

classes of holomorphic vector bundles4 over twistor space that are holomorphically trivial

on any projective live CP 1
x →֒ P3 and gauge equivalence classes of solutions to the SDYM

equations on M4. This is called the Penrose-Ward transform [42, 45].

Let us now introduce a real structure on P3 that yields a split signature real slice in

M4. This can be done by introducing an anti-holomorphic involution τ : P3 → P3 that

is given by

τ(zα, λα̇) := (z̄βCβ
α, Cα̇

β̇λ̄
β̇
) , (2.15a)

where bar denotes complex conjugation and5

(Cα
β) :=

(

0 1

1 0

)

and (Cα̇
β̇) :=

(

0 1

1 0

)

. (2.15b)

By virtue of the incidence relation zα = xαβ̇λ
β̇
, we obtain an induced involution on M4,6

τ(xαβ̇) = x̄γδ̇Cγ
αC

δ̇
β̇ . (2.16)

The fixed point set τ(x) = x is given by x11̇ = x̄22̇ and x12̇ = x̄12̇ and defines a split

signature space-time M4
τ
∼= R2,2:

ds2 = −1

2
εαβεγ̇δ̇dx

αγ̇dxβδ̇ = −|dx11̇|2 + |dx12̇|2 . (2.17)

4Recall that the holomorphic vector bundles E and π∗
1E are defined up to the equivalence f+− ∼

h−1

+ f+−h−, where the h± are holomorphic GL(r,C)-valued function on Û± and V ±
α h± = 0.

5Note that these are nothing but the charge conjugation matrices in split signature [46]. Such changes

do not affect Aαβ̇ .
6We shall use the same notation τ for the anti-holomorphic involutions induced on the different manifolds

appearing in (2.9).

– 5 –
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We may choose the following parametrisation:

x11̇ = x̄22̇ =: −(x3 − ix2) and x12̇ = x̄21̇ =: (x4 + ix1) (2.18)

leading to

ds2 = (dx1)2 − (dx2)2 − (dx3)2 + (dx4)2 . (2.19)

Notice that the involution τ can be extended to (holomorphic) functions defined on the

manifolds appearing in the double fibration (2.9) and hence to E and π∗1E yielding real

gauge fields taking values in some real form g of gl(r,C). For a detailed account on the

real geometries appearing for (2.15), we refer to [47].

Using the coordinates xµ = (x1, . . . , x4) and ∂µ := ∂/∂xµ, the SDYM equations (2.13)

take the more familiar form

F12 = −F34 , F13 = F24 and F14 = F23 , (2.20)

with Fµν := [∇µ,∇ν ] and ∇µ := ∂µ + Aµ, while the linear system on e.g. Û+ is given by

L1ψ = 0 = L2ψ ,

L1 := λ(∇3 + i∇2) + (∇4 − i∇1) and L2 := λ(∇4 + i∇1) + (∇3 − i∇2) ,
(2.21)

with λ := λ+ and ψ := ψ+.

To make contact with the discussion of the previous section, let us perform the linear

fractional transformation

λ =
ζ − i

ζ + i
(2.22)

upon which the linear system (2.21) becomes

L̂1ψ = 0 = L̂2ψ ,

L̂1 := ζ(∇3 + ∇4) + (∇1 + ∇2) and L̂2 := ζ(∇1 −∇2) + (∇3 −∇4) .
(2.23)

Of course, also this linear system leads to (2.20). Assuming that the gauge potential Aµ

depends only on x1 and x2 together with Φ1,2 := A3,4 and taking the linear combinations
1
2 [L̂1 ± ζ−1L̂2], we find

[

∂1 + A1 +
1

2
(ζ + ζ−1)Φ1 +

1

2
(ζ − ζ−1)Φ2

]

ψ = 0 ,

[

∂2 + A2 +
1

2
(ζ + ζ−1)Φ2 +

1

2
(ζ − ζ−1)Φ1

]

ψ = 0 .

(2.24a)

Thus, we arrive at

F12 + [Φ1,Φ2] = 0 , ∇1Φ2 −∇2Φ1 = 0 and ∇1Φ1 −∇2Φ2 = 0 . (2.24b)

Let us write A = A1dx
1 + A2dx

2 and Φ = Φ1dx
1 + Φ2dx

2. The system (2.24) is almost

the component form of (2.6), (2.7) when written in conformal gauge. In fact, assuming

that g admits a Z2-grading as discussed above, the sigma model equations on G/H arise

as a Z2-invariant subsector of (2.24) determined by this grading. If we let Ω : g → g be

– 6 –
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the Z2-automorphism of g, we may introduce the projectors P(0) := 1
2(1+ Ω) and P(2) :=

1
2 (1 − Ω) such that h = P(0)(g) and g(2) = P(2)(g). The configurations (A,Φ) we are

interested in are then those with (A,Φ) = (Ω(A),−Ω(Φ)), i.e. we may set A =: A ∈ h and

Φ =: j(2) ∈ g(2). Notice that the system (2.24) was introduced in [48, 49] (see also [50, 51]).

Notice also that one may study dimensional reductions of the N = 4 SDYM equations onR2,2 to two dimensions as done in [52] to end up with sigma models for maps from certain

super Riemann surfaces into G or G/H.

In summary, the SDYM equations (2.20) for a gauge potential Aµ on four-dimensional

flat space with a split signature metric and with A1,2 ∈ h and A3,4 ∈ g(2) for g ∼= h ⊕ g(2)

will reduce to the first-order system of a coset model G/H in conformal gauge, provided

we assume that Aµ is independent of x3 and x4.

3 Superstring sigma models and generalised self-dual Yang-Mills theory

3.1 Superstring sigma models

Let us now examine superstring models that are based on coset superspaces G/H, where

the denominator groups arise as the fixed point sets of order-4 automorphisms of some Lie

supergroup G. At the Lie algebra level g := Lie(G) we have (m,n = 0, . . . , 3)

g ∼=
3
⊕

m=0

g(m) , with g(0) := Lie(H) and [g(m), g(n)} ⊂ g(m+n mod 4) . (3.1)

Here, g(0) and g(2) are generated by bosonic generators while g(1) and g(3) by fermionic

ones, respectively and [·, ·} denotes the (graded) commutator on g. As before, we shall also

denote g(0) by h.

To write down the superstring action, we consider g : Σ → G, where Σ is a worldsheet

surface with a Lorentzian signature metric and introduce the current

j := g−1dg = j(0) + j(1) + j(2) + j(3) , with j(m) ∈ g(m) (3.2)

according to the Z4-decomposition of g. We again set A := j(0).

The superstring action can be written as a sum of kinetic and Wess-Zumino terms [2,

3, 53],

S = −T
2

∫

Σ
str
[

j(2) ∧ ∗j(2) + κj(1) ∧ j(3)
]

, (3.3)

where T =
√

λ
2π

is the string tension and ‘str’ denotes the supertrace on g compatible with

the Z4-grading. The κ-symmetry condition requires that κ = ±1; in what follows we shall

assume that κ = 1.7

By starting from the Maurer-Cartan equation for the current (3.2)

dj + j ∧ j = 0 (3.4)

7The opposite sign choice is related by a parity transformation on Σ.

– 7 –
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and splitting j according to the Z4-grading of the algebra, we find

dA+A ∧A+ j(1) ∧ j(3) + j(2) ∧ j(2) + j(3) ∧ j(1) = 0 ,

∇j(1) + j(2) ∧ j(3) + j(3) ∧ j(2) = 0 ,

∇j(2) + j(1) ∧ j(1) + j(3) ∧ j(3) = 0 ,

∇j(3) + j(1) ∧ j(2) + j(2) ∧ j(1) = 0 ,

(3.5a)

and where we used (2.5). The variation of (3.3) over g together with (3.5a) then yields the

following field equations:

∇∗j(2) + j(3) ∧ j(3) − j(1) ∧ j(1) = 0 ,

j(2) ∧ (j(1) + ∗j(1)) + (j(1) + ∗j(1)) ∧ j(2) = 0 ,

j(2) ∧ (j(3) − ∗j(3)) + (j(3) − ∗j(3)) ∧ j(2) = 0 .

(3.5b)

Eqs. (3.5) constitute the full system of the superstring equations in first-order form, i.e. the

equations for the algebra-valued one-form j. This system is invariant under the bosonic

H-gauge transformations and the fermionic κ-gauge symmetry.8

As was shown in [1] for type IIB superstrings on AdS5 × S5, the Z4-grading makes it

possible to construct one-parameter families of flat currents which in turn yield infinitely

many non-local conserved charges à la Lüscher and Pohlmeyer [4]. In fact, this not only

true for the superstring on AdS5 × S5 but is a generic feature of models based on cosets

with order-4 automorphisms and with an action of the form (3.3).9 One may verify that

the following combination of the components of the current in (3.2)

J(ζ) := A+ ζ−1 j(1) +
1

2
(ζ2 + ζ−2) j(2) + ζ j(3) +

1

2
(ζ2 − ζ−2) ∗j(2) , (3.6a)

where ζ is a complex spectral parameter, satisfies the flatness condition

dJ(ζ) + J(ζ) ∧ J(ζ) = 0 , (3.6b)

and vice versa, imposing this flatness condition leads to the full system (3.5) of first-order

equations for the current j. As before, (3.6b) follows as compatibility condition of an

auxiliary linear problem
[

d + J(ζ)
]

ψ = 0 , (3.6c)

where ψ is some G-valued function that depends on the spectral parameter ζ.

3.2 Twistors and generalised self-dual Yang-Mills theory

As we have seen in section 2.2, symmetric space coset models follow upon dimensionally

reducing the SDYM equations on R2,2 down to two dimensions. That way two components

of the SDYM field Aµ combine into a Higgs field leading to the current j(2). Superstrings

based on coset superspaces as those mentioned above are described by one-parameter fam-

ilies of flat currents of the form (3.6a). If we want to understand the corresponding super-

string equations as a dimensional reduction of some self-duality equations, we in fact need

8It is also invariant under 2d reparametrisations.
9See [30] for the extension to Zk-graded coset (super)spaces.
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a theory living in eight dimensions since from (3.2)–(3.6) we conclude that we need three

Higgs fields that are represented by j(1), j(2) and j(3). Furthermore, like for symmetric

coset space models, we should consider the self-duality equations in split signature, i.e. onR4,4. Recall that there are various generalisations of the SDYM equations to (Euclidean)

higher dimensions [31–33]. We shall explain which theory leads to the equations (3.5), (3.6)

in two dimensions.

Consider complexified eight-dimensional space-time M8 := C8. Furthermore, consider

two rank-2 complex vector bundles S and S̃ over M8 and make the identification TM8 ∼=
S ⊗ ⊙3S̃, where ‘⊙p’ denotes the p-th symmetric tensor power; see also eqs. (3.18). This

will reduce the rotation group SL(8,C) to (SL(2,C) × SL(2,C))/Z2.
10 As before, we may

consider the projectivisation of S̃∗ and introduce F9 := P(S̃∗) ∼= C8 ×CP 1 over M8. The

spaces M8 and F9 may be coordinatised by xαβ̇1β̇2β̇3 and (xαβ̇1β̇2β̇3, λα̇), where xαβ̇1β̇2β̇3 is

totally symmetric in its dotted indices and λα̇ are homogeneous coordinates on CP 1. If

we introduce ∂
αβ̇γ̇δ̇

with11

∂αβ̇1β̇2β̇3
xβγ̇1γ̇2γ̇3 = δα

βδ(β̇1

γ̇1δβ̇2

γ̇2δβ̇3)
γ̇3 , (3.7)

where parentheses denote normalised symmetrisation, we then define the twistor distribu-

tion to be the rank-2 distribution D on F9 given by

D := span
{

Vα := λβ̇1λβ̇2λβ̇3∂
αβ̇1β̇2β̇3

}

. (3.8)

The reason for this choice of the twistor distribution is that we wish to end up we a Lax

pair containing the eight components of a gauge potential in eight dimensions; for more

details see below.

Since D is integrable, it defines a foliation of F9. The resulting quotient will be twistor

space, a seven-dimensional complex manifold denoted by P7,

P7 M8

F9

π1 π2�
�	

@
@R

(3.9)

where π2 is the trivial projection and π1 : (xαβ̇1β̇2β̇3, λα̇) 7→ (zαβ̇1β̇2 = xαβ̇1β̇2β̇3λ
β̇3
, λα̇).

Hence, P7 ⊂ CP 7 is a holomorphic vector bundle over CP 1 that can best be understood

in terms of its global holomorphic sections H0(CP 1,P7) which are those of O(1) ⊗C6 →CP 1 with the obvious restrictions on the moduli: H0(CP 1,P7) ⊂ H0(CP 1,O(1) ⊗ C6)

with zαβ̇1β̇2 = xαβ̇1β̇2β̇3λ
β̇3

. Notice that H1(CP 1,P7) = 0. Furthermore, a point x ∈
M8 corresponds to a projective line CP 1

x →֒ P7 in twistor space, while a point (z, λ) ∈
10This is somewhat in spirit of para-conformal/quaternionic-conformal manifolds [54, 55] which are 4k-

dimensional complex manifolds M with the assumption of a factorisation of the tangent bundle TM into

one rank-2 complex vector bundle S and one rank-2k complex vector bundle H, i.e. TM ∼= S ⊗H. In this

case the rotation group SL(4k,C) is reduced to (SL(2,C) × SL(2k,C))/Z2. In our example, k = 2 and we

assume in addition that H is given by ⊙3S̃ for some rank-2 complex vector bundle S̃. Hence, we obtain

(SL(2,C) × SL(2,C))/Z2.
11To be more concrete, we have ∂α1̇1̇1̇ := ∂

∂xα1̇1̇1̇
, ∂α1̇1̇2̇ := 1

3

∂

∂xα1̇1̇2̇
, ∂α1̇2̇2̇ := 1

3

∂

∂xα1̇2̇2̇
and ∂α2̇2̇2̇ := ∂

∂xα2̇2̇2̇
.
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P3 corresponds to a 2-plane inside M8 that is parametrised by xαβ̇1β̇2β̇3 = xαβ̇1β̇2β̇3

0 +

µαλβ̇1λβ̇2λβ̇3 , with xαβ̇1β̇2β̇3

0 = const. and µα arbitrary.

We consider now a rank-r|s holomorphic (super) vector bundle E → P7 and its pull-

back π∗1E → F9. Hence, their structure groups are taken to be GL(r|s,C).12 Since P7

and F9 can be covered by two patches, U± and Û±, these bundles are again characterised

by transition functions f+−. We shall also assume that E is topologically trivial and

holomorphically trivial when restricted to any CP 1
x →֒ P7 for x ∈ M8. These conditions

then again imply the existence of smooth GL(r|s,C)-valued functions ψ± on Û± such that

f+− can be decomposed as

f+− = ψ−1
+ ψ− , with ∂̄Fψ± = 0 . (3.10)

Since V ±
α f+− = λβ̇1

± λ
β̇2

± λ
β̇3

± ∂αβ̇1β̇2β̇3
f+− = 0, where V ±

α are the restrictions of Vα to the

coordinate patches Û±, we find

ψ+V
+
α ψ

−1
+ = ψ−V

+
α ψ−1

− (3.11)

on Û+ ∩ Û−. Thus, we may introduce a Lie algebra-valued one-form A on F9 which has

components only along D,

VαyA|Û±
:= A±

α = ψ±V
±
α ψ

−1
± = λβ̇1

± λ
β̇2

± λ
β̇3

± A
αβ̇1β̇2β̇3

, (3.12)

where A
αβ̇1β̇2β̇3

is λ±-independent. This can be re-written as

(V ±
α + A±

α )ψ± = λβ̇1

± λ
β̇2

± λ
β̇3

± ∇
αβ̇1β̇2β̇3

ψ± = 0 , (3.13a)

with ∇
αβ̇1β̇2β̇3

:= ∂
αβ̇1β̇2β̇3

+ A
αβ̇1β̇2β̇3

. The compatibility conditions are given by

[

∇
α(β̇1β̇2β̇3

,∇
ββ̇4β̇5β̇6)

]

= 0 , (3.13b)

i.e. all dotted indices are symmetrised. Notice that the anti-symmetric tensor product of

two vector representations in eight dimensions decomposes under (SL(2,C)×SL(2,C))/Z2

as 8∧8 ∼= 3⊕15⊕7⊕3 and the constraints (3.13b) just imply the vanishing of the 7-part

of the field strength of the gauge potential Aαβ̇1β̇2β̇3
.

In summary, we have a one-to-one correspondence between equivalence classes of holo-

morphic vector bundles over P7 that are holomorphically trivial along CP 1
x →֒ P7 for

x ∈ M8 and gauge equivalence classes of solutions to the generalised self-duality equa-

tions (3.13b) on M8. The system (3.13) belongs to the class Bq in Ward’s classification

scheme [32].

We will now explain that (3.13) yields the Lax connection and the first-order system

for the superstring. To this end, we introduce a real structure on P7 that yields a split

signature real slice in M8. This can be done in a similar way as (2.15). In particular, we

consider the involution

τ(zαβ̇1β̇2, λα̇) := (z̄βγ̇1 γ̇2Cβ
αCγ̇1

β̇1Cγ̇2

β̇2, Cα̇
β̇λ̄β̇) , (3.14)

12We may additionally assume that the Berezinian line bundle Ber E is trivial, thus reducing the structure

group to SL(r|s,C).
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where the matrices Cα
β and Cα̇

β̇ are the same as in (2.15b). We therefore find

τ(xαβ̇1β̇2β̇3) = x̄βγ̇1γ̇2γ̇3Cβ
αCγ̇1

β̇1Cγ̇2

β̇2Cγ̇3

β̇3 . (3.15)

as induced involution on M8. The fixed point set τ(x) = x is given by

x11̇1̇1̇ = x̄22̇2̇2̇ , x11̇1̇2̇ = x̄21̇2̇2̇ , x11̇2̇2̇ = x̄21̇1̇2̇ , x12̇2̇2̇ = x̄21̇1̇1̇ (3.16)

and defines a split signature space-time M8
τ
∼= R4,4:

ds2 =
1

2
εαβεβ̇1γ̇1

εβ̇2γ̇2
εβ̇3γ̇3

dxαβ̇1β̇2β̇3dxβγ̇1γ̇2γ̇3

= |dx11̇1̇1̇|2 − 3|dx11̇1̇2̇|2 + 3|dx11̇2̇2̇|2 − |dx12̇2̇2̇|2 .
(3.17)

We then define

x11̇1̇1̇ = x̄22̇2̇2̇ =:
1

8
[(x5 − 3x8) + i(3x1 − x3)] ,

x11̇1̇2̇ = x̄21̇2̇2̇ =:
1

8
[(x6 + x7) + i(x2 + x4)] ,

x11̇2̇2̇ = x̄21̇1̇2̇ =:
1

8
[(x5 + x8) − i(x1 + x3)] ,

x12̇2̇2̇ = x̄21̇1̇1̇ =:
1

8
[(x6 − 3x7) − i(3x2 − x4)]

(3.18)

for real xµ with µ, ν, . . . = 1, . . . , 8. This parametrisation has been chosen with some

hindsight and it will become transparent momentarily. As before, the involution τ can be

extended to E and π∗1E to end up with real gauge fields taking values in some real form g

of gl(r|s,C).

Inverting (3.18), the linear system (3.13a) on e.g. Û+ is given by

L1ψ = 0 = L2ψ ,

L1 := λ3[(∇5 −∇8) − i(∇1 −∇3)] − λ2[(3∇6 + ∇7) − i(∇2 + 3∇4)]

+ λ[(3∇5 + ∇8) + i(3∇3 + ∇1)] − [(∇6 −∇7) + i(∇2 −∇4)] ,

L2 := λ3[(∇6 −∇7) − i(∇2 −∇4)] − λ2[(3∇5 + ∇8) − i(3∇3 + ∇1)]

+ λ[(3∇6 + ∇7) + i(∇2 + 3∇4)] − [(∇5 −∇8) + i(∇1 −∇3)] ,

(3.19)

with λ := λ+, ψ := ψ+, ∇µ := ∂µ +Aµ and ∂µ := ∂/∂xµ. It is a straightforward exercise to

compute [L1,L2} to arrive at (3.13b) in the coordinates xµ. We shall postpone presenting

the result and first perform an additional transformation of the spectral parameter. In light

of our previous discussion, let us again perform the linear fractional transformation (2.22).

After some algebraic manipulations, we find that the linear system (3.19) is equivalent to

L̂1ψ = 0 = L̂2ψ ,

L̂1 := ζ3(∇3 + ∇4) + ζ2(∇7 + ∇8) + ζ(∇1 + ∇2) + (∇5 + ∇6) ,

L̂2 := ζ3(∇5 −∇6) − ζ2(∇1 −∇2) − ζ(∇7 −∇8) − (∇3 −∇4) .

(3.20)

Of course, both systems (3.19) and (3.20) lead to the same compatibility conditions,

though (3.20) looks much simpler and eventually leads us directly to the Lax pair for

the superstring. This was the reason for the choice (3.18).

– 11 –
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The compatibility equations are then given by (see also (3.13b))

F12 + F34 + F78 −F56 = 0 ,

F13 −F24 + F67 −F58 = 0 ,

F14 −F23 −F57 + F68 = 0 ,

F15 + F18 −F26 −F27 + F38 −F47 = 0 ,

F16 −F17 −F25 + F28 + F37 −F48 = 0 ,

F35 −F46 = 0 ,

F36 −F45 = 0 ,

(3.21)

where Fµν := [∇µ,∇ν}.
To make contact with our discussion about superstring sigma models, let us assume

that Aµ depends only on x1 and x2 and introduce Φ1,2 := A3,4 and

Ψ1 :=
1

2
(A5 + A6 + A7 −A8) , Ψ2 :=

1

2
(A5 + A6 −A7 + A8) ,

Σ1 :=
1

2
(−A5 + A6 + A7 + A8) , Σ2 :=

1

2
(A5 −A6 + A7 + A8) .

(3.22)

Taking the linear combinations 1
2 [ζ−1L̂1 ± ζ−2L̂2], we find from (3.20)

[

∂1 + A1 + ζ−1Ψ1 +
1

2
(ζ2 + ζ−2)Φ1 + ζΣ1 +

1

2
(ζ2 − ζ−2)Φ2

]

ψ = 0 ,

[

∂2 + A2 + ζ−1Ψ2 +
1

2
(ζ2 + ζ−2)Φ2 + ζΣ2 +

1

2
(ζ2 − ζ−2)Φ1

]

ψ = 0 .

(3.23a)

The compatibility equations of this system are of Hitchin-type

F12 + [Φ1,Φ2} + [Ψ1,Σ2} + [Σ1,Ψ2} = 0 ,

∇1Ψ2 −∇2Ψ1 + [Φ1,Σ2} + [Σ1,Φ2} = 0 ,

∇1Φ2 −∇2Φ1 + [Ψ1,Ψ2} + [Σ1,Σ2} = 0 ,

∇1Σ2 −∇2Σ1 + [Φ1,Ψ2} + [Ψ1,Φ2} = 0 ,

∇1Φ1 −∇2Φ2 − [Ψ1,Ψ2} + [Σ1,Σ2} = 0 ,

[Φ1,Ψ1 + Ψ2} + [Ψ1 + Ψ2,Φ2} = 0 ,

[Φ1,Σ1 − Σ2} − [Σ1 − Σ2,Φ2} = 0 ,

(3.23b)

which, of course, just follow from (3.21) upon assuming that Aµ depends only on x1 and

x2 and using the above definitions of Φ, Ψ and Σ. As before, Φ = Φ1dx
1 + Φ2dx

2 and

similarly for the others. Eqs. (3.23) represent almost (3.5) and (3.6) in conformal gauge.

If we assume that g admits a Z4-grading, then the superstring equations arise as a Z4-

invariant subsector of (3.23). This is analogous to what happened in the symmetric space

case. Let Ω : g → g be the Z4-automorphism of g. We then may introduce projectors13

(see also eqs. (3.1); i :=
√
−1)

P(m) :=
1

4
(1 + i3mΩ + i2mΩ2 + imΩ3) , with g(m) = P(m)(g) , (3.24)

13For details on the grading in the case of superstrings on AdS5 × S5, see e.g. [56].
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projecting onto the g(m)-components of g. The configurations (A,Ψ,Φ,Σ) corresponding

to the superstring are those which satisfy

(A,Ψ,Φ,Σ) = (Ω(A), iΩ(Ψ),−Ω(Φ),−iΩ(Σ)) . (3.25)

Therefore, for such (A,Ψ,Φ,Σ) we may relable A =: A ∈ h, Ψ =: j(1) ∈ g(1), Φ =: j(2) ∈ g(2)

and Σ =: j(3) ∈ g(3) eventually arriving at (3.5) and (3.6).

In summary, the first-order system (3.5) of the superstring based on a coset super-

space G/H with the above properties can be obtained as a dimensional reduction of the

generalised self-duality type equations (3.13b), (3.21) for a gauge potential Aµ with the

assumptions A1,2 ∈ h, A3,4 ∈ g(2), ±A5+A6+A7∓A8 ∈ g(1) and A5±A6∓A7+A8 ∈ g(3),

where g ∼= h ⊕ g(1) ⊕ g(2) ⊕ g(3). As we have dicussed above, gauge equivalence classes of

solutions to the self-duality type equations (3.13b) are in one-to-one correspondence with

equivalence classes of holomorphic vector bundles over the twistor space P7 and its cor-

respondence space F9 which are subject to certain algebraic constraints. Therefore, all

solutions to the superstring equations (3.5) are encoded in these holomorphic vector bun-

dles. Of course, physical solutions to (3.5) should additionally obey the Virasoro constraints

putting therefore further assumptions on the admissible vector bundles.

3.3 Remarks

Remark 1. For the sake of concreteness, we only considered a dimensional reduction

leading to a Lorentzian worldsheet. Of course, one could perform the reduction differently

to end up with a Euclidean worldsheet. Furthermore, as we wanted to re-produce the

superstring equations, we considered an anti-holomorphic involution (3.14) on P7 corre-

sponding to a split signature space-time R4,4. One may instead consider an involution on

P7 leading to an Euclidean signature real slice in M8 and then try to repeat the above

procedure to arrive at a direct generalisation of the Hitchin equations given in [48]. In

view of that notice that the Hitchin equations are a key ingredient in recent constructions

of strong coupling gluon scattering amplitudes in planar N = 4 SYM theory [23, 24] via

the AdS/CFT correspondence (see also [57]). It would be interesting to see whether these

generalised equations would play a role when extending the results of [23, 24] to the full

background geometry.

Remark 2. Finally, let us make a few comments on non-local charges and hidden sym-

metry structures. The above twistor description allows for a geometric re-interpretation

of the conserved non-local charges for the superstring: In fact, these charges follow from

the function ψ appearing in (3.6c) for some particular choice of contour in the worldsheet

surface upon expanding it in powers of the spectral parameter [1]. We have just seen how

this function is related to the transition functions of the holomorphic vector bundles E and

π∗1E over the twistor space P7 and its correspondence space F9. In this respect, notice

that upon reducing (3.19) to two dimensions and making use of the definitions of Ψ, Φ

and Σ, one obtains a linear system equivalent to (3.23a). That way one may then study

(infinitesimal) deformations of these vector bundles to describe the hidden symmetry al-

gebras for the superstring and furthermore, to give an interpretation of the symmetries in

– 13 –
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terms of sheaf cohomology along the lines presented in the works [44, 58–63]. For example,

any deformation algebra of the transition functions of Lie algebra-type can be mapped into

a symmetry algebra for the gauge potential (modulo gauge equivalence); see [61, 62] for

more details. This twistor re-interpretation may in turn help shed light on the hidden sym-

metry structures appearing in the gauge theory duals via the holographic correspondence.

In view of this it would, for example, be interesting to study the recently uncovered dual

(super)conformal symmetry [64–68] (see also [69]) in N = 4 SYM theory and superstring

theory on AdS5 × S5 [57, 70–73] in terms of the twistor approach presented here.14 Recall

that on the string side, the appearance of the dual superconformal symmetry is due to

the ‘T-self-duality’ of the superstring sigma model under a certain combination of bosonic

and fermionic T-dualities in Poincaré parametrisation [71, 72]. A way of interpreting this

T-duality is then as a dressing transformation on the space of solutions, like a Bäcklund

transformation (see, e.g. [75]).
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